Sparse Sums of Positive Semidefinite Matrices
نویسندگان
چکیده
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملA Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices
Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance function and is ...
متن کاملsingular value inequalities for positive semidefinite matrices
in this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl. 308 (2000) 203-211] and [linear algebra appl. 428 (2008) 2177-2191].
متن کاملSemidefinite Programming in the Space of Partial Positive Semidefinite Matrices
We build upon the work of Fukuda et al. [SIAM J. Optim., 11 (2001), pp. 647–674] and Nakata et al. [Math. Program., 95 (2003), pp. 303–327], in which the theory of partial positive semidefinite matrices was applied to the semidefinite programming (SDP) problem as a technique for exploiting sparsity in the data. In contrast to their work, which improved an existing algorithm based on a standard ...
متن کاملPermanents of Positive Semidefinite Hermitian Matrices
In this project, we are interested in approximating permanents of positive semidefinite Hermitian matrices. Specifically, we find conditions on positive semidefinite Hermitian matrices such that we can generalize the algorithm described in Sections 3.6 3.7 of [1] to matrices satisfying these conditions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Algorithms
سال: 2016
ISSN: 1549-6325,1549-6333
DOI: 10.1145/2746241